[3]
R.H. Meyers and D.C. Montgomery, Response Surface
Methodology: Process and Product Optimization Using Designed Experiments, Wiley-Interscience,
New York, 1995.
[4]
L. Erikson, E. Johansson and C. Wikström, Chemom. Intell. Lab. Syst., 43 (1998) 1-24.
[5]
M.E. Johnson and C.J. Nachtsheim, Technometrics, 25 (1983) 271-277.
[6]
V.V. Federov, Theory of Optimal Experiments, Academic Press, New
York, 1972.
[7] P.C.
Jurs, G.A. Bakken and H.E. McClelland, Chem. Rev., 100 (2000), 2649-2678.
[8]
F. Despagne and D. L. Massart, Analyst, 123 (1998) 157R-178R.
[9]
I.H. Witten and E. Frank, Data Mining, Morgan Kaufmann Publishers, San
Francisco, 1999.
[10]
B.M. Smith and P.J. Gemperline, Anal. Chim. Acta, 423 (2000), 167-177.
[23] R.W. Kennard and L.A. Stone, Technometrics,
11 (1996) 137-148.
[24] B. Bourguignon, P.F. de Aguiar, K. Thorré and D.L.
Massart, J. Chromatogr. Sci., 32 (1994) 144-152.
[25]
D.R. Rogers and A. J. Hopfinger, J. Chem. Intell.
Lab. Syst., 9 (1994) 854-866.
[26] J.
Zupan, M. Novic and I. Ruisánchez, J. Chem. Intell.
Lab. Syst., 38 (1997) 1-23.
[27] D.
Svozil and J.G.K. Sevcik, J. Chem Inf. Comput. Sci.,
37 (1997) 338-342.
[28]
F.R. Rapp, Kalibrierung und Validierung von Sensorarrays unter Einsatz neuronaler
Netze und genetischer Algorithmen, Master Thesis, University of Tübingen,
1996.
[29] N.M.
Faber, X.-H. Song and P.K. Hopke, Sample–specific standard error of prediction
for partial least squares regression, Trac – Trend. Anal. Chem., in press.
[30] Z.P.
Chen, Y.Z. Liang, J.H. Jiang, Y. Li, J.Y. Qian and R.Q. Yu, J. Chemometrics, 13
(1999) 15-30.
[31]
H.T. Eastman and W.J. Krzanowski, Technometrics, 24 (1982) 73-77.
[32]
H. Martens and M. Martens, Food Qual. Prefer., 11 (2000) 5-16.
[33]
H. Martens, M. Hoy, F. Westad, B. Folkenberg and M. Martens, Chemom.
Intell. Lab. Syst., 58 (2001) 151-170.
[34]
N.M. Faber, L.M.C. Buydens and G. Kateman, Anal. Chim. Acta, 296 (1994)
1-20.
[35]
B.K. Dable and K.S. Booksh, J. Chemometrics, 15 (2001) 591-613.
[36]
R. Kramer, Chemometric Techniques for Quantitative Analysis, Marcel Dekker
Inc., New York, 1998.
[37]
H. Wold, Nonlinear Iterative Partial Least Squares (NIPALS) Modeling - Some
Current Developments, in: P. R. Krishnajah (Ed.), Multivariate Analysis,
Academic Press, New York 1973.
[38]
G. Baffi, E. Martin, J. Morris, Chemom. Intell.
Lab. Syst., 61 (2002) 151-165.
[39] H.
Martens and T. Naes, Multivariate Calibration, John Wiley & Sons Inc., New
York, 1989.
[40]
H. Martens and H. Martens, Multivariate Analysis of Quality - An
Introduction, John Wiley & Sons Inc., New York, 2000.
[41] K.
H. Esbensen, Multivariate Data Analysis – In Practice, 5th edn.,
Camo Process AS, Norway, 2001.
[42]
A.D. Shaw, A. di Camillo, G. Vlahov, A. Jones, G. Bianchi, J. Rowland and
D.B. Kell, Anal. Chim. Acta, 348 (1997) 357-374.
[43]
W. Lindberg, J-A. Persson and S. Wold, Anal. Chem., 55 (1983) 643-648.
[50] J.
Zupan and J. Gasteiger, Neural networks in chemistry and drug design, 2nd edn.,
Wiley-VCH, Weinheim, 1999.
[51]
M. Bos, A. Bos and W.E. van der Linden, Analyst, 118 (1993) 323-328.
[52]
T. Blank and S.D. Brown, Anal. Chem., 65 (1993) 3081-3089.
[53]
P. J. Gemperline and J.R. Long, Anal. Chem., 63 (1991) 2313-2323.
[54]
C. Borggaard and H.H. Thodberg, Anal. Chem.,
64 (1992) 545-551.
[55]
F. Dieterle, D. Nopper and G. Gauglitz, Fresen. J. Anal. Chem. 370
(2001) 723-730.
[56] D.
Patterson, Artificial neural networks, theory and applications, Prentice Hall
Inc., Upper Saddle River, 1996.
[57] J.
Principe, N. Euliano, W. Lefebvre, Neural and adaptive systems: Fundamentals
through simulations, John Wiley & Sons Inc., New York, 2000.
[58] S.
Kaykin, Neural networks a comprehensive foundation, Prentice Hall Inc., Upper
Saddle River, 1999.
[59]
A. Zell, Simlation Neuronaler Netzwerke, Addison-Wesley, Bonn, Paris,
1994.
[60]
S.W. Morre, J.W. Gardner, E.L. Hines, W. Göpel and U. Weimar, Sens. Actuators B, 15-16 (1993) 344-348.
[61]
D. E. Rumelhart and J. L. McClelland, Parallel distributed Processing:
Explorations in the Microstructure of Cognition, Vol. 1, MIT Press, Cambridge,
1986.
[62]
D.E. Rumelhart, G.E. Hinton and R.J. Williams, Learning internal
representations by error propagation, in: J.A. Anderson and E.
Rosenfeld (eds.), Neurocomputing: Foundations of Research, MIT Press, Cambridge,
1988.
[64]
T. Tollenaere, Neural Networks, 3 (1990) 561-573.
[65] M.
Riedmiller and H. Braun, Rprop - A fast adaptive learning algorithm, Technical
report, University of Karlsruhe, 1992.
[66]
M. Riedmiller and H. Braun, A direct adaptive method for faster
backpropagation learning: The RPROP algorthm, in: ICNN-93, IEEE Int. Conf. on
Neural Networks, San Fancisco,1993.
[68]
E. Richards, C. Bessant and S. Saini, Chemom. Intell. Lab. Syst., 61
(2002) 35-49.
[69]
T. Udelhoven and B. Schutt, Chemom. Intell. Lab. Syst., 51 (2000) 9-22.
[70]
R. Fletcher, Practical Methods of Optimisation: Unconstrained
Optimisation, Vol. 1, John Wiley & Sons Inc., New York, 1980.
[71]
M.F. Moller, Neural Networks, 6 (1993) 525-533.
[72]
D. Montana and L. Davis, Training feedforward neural
networks using genetic algorithms, in: Proceedings of the 11th
International Joint Conference on Artificial Intelligence, Morgan Kaufman, San
Mateo, 1989.
[73]
A Homaifar, S. Guan, Training weights of neural networks by genetic
algorithms, in: Proceedings of the 2nd IASTED, Anaheim,
1990.
[74] W.S.
Sarle, Proceedings of the 27th Symposium on the Interface of
Computing Science and Statistics, 1995, 352-360.
[75]
K. Hornik, Neural Networks, 6 (1993) 251-257.
[76]
J.F. Kolen and J.B. Pollack, in: R.P. Lippmann, J.E. Moody and D.S.
Touretzky, Advances in Neural Information Processing Systems, Vol. 3, Morgan
Kaufmann, San Mateo, 1991.
[77] A.
Esposito, M. Marinaro, D. Oricchio and S. Scarpetta, Neural Networks, 13 (2000)
651-665.
[78] A.
Weigend, in: M.C. Mozer, P. Smolensky, D.S. Touretzky, J.L. Elman, and A.S.
Weigend (eds.), Proceedings of the 1993 Connectionist Models Summer School,
Lawrence Erlbaum Associates, Hillsdale, 1994.
[79] M.L.
Astion and P. Wilding, Arch. Pathol. Lab. Med., 116 (1992) 995-1001.
[80]
C. Macleod and G.M. Maxwell, Artif. Intell. Rev., 16 (2001) 201-224.
[110]
F. Gao, M. Li, F. Wang, B. Wang and P. Yue, Ind. Eng. Chem.
Res., 38 (1999) 4330-4336.
[111]
Neurogenetic Optimizer 2.6, Biocomp Systems Inc., Redmond, 1998.
[112] J.H.
Jiang, J.H. Wang, X.H. Song and R.Q. Yu, J. Chemometr., 10 (1996) 253-267.
[113]
T. Ash, Connection Sci., 1 (1989) 365-375.
[114]
A. Yasri and D. Hartsough, J. Chem. Inf. Comput. Sci., 41 (2001) 1218-1227.
[115]
G. Chakraborty, IEEE Conference on Neural Networks, 2 (1995) 1116-1120.
[116]
J. Hertz, A. Krotgh and R.G. Palmer, Introduction to the Theory of Neural
Computation, Addison-Wesley, Redwood City, 1991.
[117]
S.E. Fahlman and C. Lebiere, The cascade correlation architecture, in: D.S.
Touretzky, Advances in Neural Information Processing Systems II, Morgan
Kaufmann, San Mateo, 1990.
[118]
M. Mitchell, An introduction to genetic algorithms, MIT Press, Massachusetts,
1998.
[119]
G. F. Miller, P.M. Todd and S.U. Hegde, Designing neural networks using
genetic algorithms, in: J.D. Shaffer, Proceedings of the Third International
Conference on Genetic Algorithms, Morgan Kaufmann, San Mateo, 1989.
[121]
H. Kitano, Complex Systems, 4 (1990) 461-476.
[122]
R. Reed, Neural Networks, 4 (1993) 740-747
[123] S.
Haykin, Neural networks a comprehensive foundation, Prentice Hall Inc., Upper
Saddle River, 1999.
[124]
F. Despagne and D.L. Massart, Chemom. Intell. Lab. Syst., 40 (1998) 145-163.
[125]
V.V. Vinod and S. Ghose, Neurocomputing, 10 (1996) 55-69.
[126]
S.S. So and M. Karplus, J. Med. Chem., 39 (1996) 1521-1530.
[127]
W. J. Krzanowski, Principles of Multivariate Analysis – A User's
Perspective, Oxford University Press, Oxford, 1988.
[128]
R.J. Brook and G. C. Arnold, Applied regression analysis and experimental
design, Marcel Dekker Inc., New York, 1985.
[129]
T. Kimura, K. Hasegawa and K. Funatsu, J. Chem. Inf. Comput. Sci., 38 (1998)
276-282.
[130]
U. Depczynski, V.J. Frost and K. Molt, Anal. Chim. Acta, 420 (2000) 217-227.
[131]
R. Meusinger and R. Moros, Chemom. Intell. Lab. Syst., 46 (1999) 67-78.
[132]
M. Clark and R.D. Cramer, Quant. Struct. Act. Relat., 12 (1993) 9-12.
[133]
S. Kirkpatrick, C.D. Gelatt and M.P. Vechi, Science, 220 (1982) 671-680.
[134]
M.C. Mozer and P. Smolensky, Skeletonization: A technique for trimming the
fat from a network via relevance assessment, in: D.S. Touretzky (ed.), Advances
in Neural Information Processing Systems 1, Morgan Kaufmann, San
Mateo, 1989.
[135]
F. Despagne and D.L. Massart, Chemom. Intell. Lab. Syst., 40 (1998) 145-163.
[136] T. Schreiner, Ausdünnungverfahren für Neuronale Netze, Master
Thesis, University of Stuttgart, 1994.
[137]
B. Hassibi and D.G. Stork, Second order derivatives for network pruning, in:
S.J. Hanson, J.D. Cowan and C.L. Giles (eds.), Advances in Neural Information
Processing Systems 5, Morgan Kaufmann, San Mateo, 1993.
[138]
Y. LeCun, J.S. Denker and S.A. Solla, Optimal Brain Damage, in: D.S.
Touretzky (ed.), Advances in Neural Information Processing Systems 2, Morgan
Kaufmann, San Mateo, 1990.
[139]
W.J. Egan, S.M. Angel and S.L. Morgan, J. Chemometrics, 15 (2001) 29-48.
[140]
T.T. Bachmann and R.D. Schmid, Anal. Chim. Acta, 401 (1999), 95-103.
[141]
T.T. Bachmann, B. Leca, F. Vilatte, J.L.Marty, D. Fournier and R.D. Schmid, Biosens.
Bioelectron., 15 (2000) 193-201.
[142] A.
Krogh and J. Hertz, A simple weight decay can improve generalization, in: J.E.
Moody, S.J. Hanson, and R.P. Lippmann (eds.), Advances in Neural Processing
System 4, Morgan Kaufmann, 1992 .
[143]
R. Reed, IEEE T. Neural Networ., 4 (1993), 740-747.
[144]
J. Sietsma and R. Dow, Neural Networks, 4 (1991), 67-79.
[146] H.
Braun and T. Ragg, ENZO, Evolution of Neural Networks, User Manual and
Implementation Guide, Technical Report 21/96, University of Karlsruhe,
1996.
[147] H.
Braun and J. Weisbrod, Evolving neural feedforward networks, in R.F. Albrecht
(ed.), Proceedings of the International Conference on Artificial Neural Nets
and Genetic Algorithms, Springer, Wien, 1993.
[149] T.
Ragg and S. Gutjahr, Building High Performan Classifiers by Integrating
Bayesian Learning, Mutual Information and Committee Techniques – A Case Study
in Time Series Prediction, in: W. Gerstner, A. Germond, M. Hasler, J.-D. Nicoud
(eds.), Artificial Neural Networks - ICANN97, Springer-Verlag, Wien, 1997.
[150]
T. Ragg, W. Menzel, W. Baum, and M. Wigbers, Predicting Sales Rates for
Thousands of Retail Traders, in: D. Tsaptsinos: Proceedings of the
International Conference on Engineering Applications of Neural Networks,
Kingston, England, 2000.
[151]
D. Hörnel and T. Ragg, A Connectionist Model for the Evolution of Styles of
Harmonization, in: Proceedings of the 1996 International Conference on Music
Perception and Cognition, Montreal, Canada 1996.
[155]
Measured by Carmen Betsch, Institute of Physical and
Theoretical Chemistry, University of Tübingen, 2000.
[156]
J. Huang and K.H. Esbensen, Chemom. Intell. Lab. Syst., 57 (2001) 37-56.
[157] G.
Maier, Angew. Chem., 110 (1998) 3128-3143.
[158] G.
Dlubek, A. Clarke, H. Fretwell, S.B. Dugdale and M.A. Alam, Phys. Status Solidi
A, 157 (1996) 351-364.
[159] R.
Buchhold, A. Nakladal, G. Gerlach, M. Herold, G. Gauglitz, K. Sahre and K.J.
Eichhorn, Thin Solid Films, 350 (1999) 178-185.
[160] P.C.
Painter and M. M. Coleman, Fundamentals of Polymer Science – An Introductory
Text, 2nd edition, Technomic Publishing Company, Lancaster, 1997.
[161]
F. Dieterle, G. Belge and G. Gauglitz, Anal. Bioanal. Chem., 374
(2002) 858-867.
[162]
J.W. Grate, A. Snow, D.S. Ballantine, H. Wohltjen, M.H. Abraham, R.A. McGill
and P. Sasson, Anal. Chem., 60 (1988) 869-875.
[163]
J.W. Grate, M. Klusty, R.A. McGill, M.H. Abraham, G. Whiting and J.
Andonian-Haftvan, Anal. Chem., 64 (1992) 610-624.
[165]
D. Leipert, F. Rathgeb, M. Herold, J. Mack, G. Gauglitz and G. Jung, Anal.
Chim. Acta, 392 (1999) 213-221.
[166] F. Rathgeb, D. Reichl, M. Herold, O. Mader,
T. Mutschler and G. Gauglitz, Fresenius J. Anal. Chem., 368 (2000) 192-195.
[167]
W.R. Vieth and J.M. Howell, J. Membr. Sci., 1 (1976) 177-220.
[168]
H. Yokouchi, M. Matsuguchi, Y. Sadaoka and Y. Sakai, Sens. Mater., 8 (1996)
69-78.
[169]
F. Rathgeb and G. Gauglitz, Anal. Chim. Acta, 372 (1998) 333-340.
[170]
G. Allen and J.C. Bevington, Comprehensive Polymer Science, Pergamon Press, Oxford,
1989.
[171]
B. Kieser, Charakterisierung sensitiver Schichten zur Selektivitätssteigerung
optischer Chemosensoren, Ph.D. Thesis, University of Tübingen, 2002.
[172]
E. Kretschmann and H. Raether, Z. Naturforsch., 23a (1968) 2135-2136.
[173]
B. Kieser, F. Dieterle and G. Gauglitz, Anal. Chem., 74 (2002) 4781-4787.
[174] B.
Kieser, D. Pauluth and G. Gauglitz, Anal. Chim. Acta,
434 (2001) 231-237.
[175]
G. Gauglitz and W. Nahm, Fresenius Z. Anal. Chem., 341 (1991) 279-283.
[176] G. Kraus and G. Gauglitz, Fresenius J.
Anal. Chem., 344 (1992) 153-157.
[177] F. Rathgeb, Charakterisierung von Wechselwirkungsprozessen
in sensitiven Schichten, Ph.D. Thesis, University of Tübingen, 1999.
[178] D. Reichl, R. Krage, C. Krummel and G.
Gauglitz, Appl. Spectrosc., 54 (2000) 583-586.
[179] BRD Deutsches Patent- und Markenamt, Offenlegungsschrift
DE 198 30 727 A1, 1999.
[180]
M.J. Molina and F.S. Rowland, Nature, 249 (1974) 810-812.
[181]
M.J. Molina and F.S. Rowland, J. Phys. Chem., 79 (1975) 667-669.
[182]
F.S. Rowland and M.J. Molina, J. Phys. Chem., 80 (1976) 2049-2056.
[183]
United States Environmental Protection Agency, Office of Air and Radiation,
http://www.epa.gov/oar/caa/contents.html, 2002.
[225]
F. Rathgeb, Charakterisierung von Wechselwirkungsprozessen in sensitiven
Schichten, Ph. D. Thesis, University of Tübingen, 1999.
[226]
F. Rathgeb and G. Gauglitz, Anal. Chim. Acta, 372 (1998) 333-340.
[227]
S. Busche, Optimierung von sensitiven Schichten zur Charakterisierung
der Freone R22 und R134a durch Oberflächenplasmonenresonanz, Master Thesis,
University of Tübingen, 2002.
[228]
G. Baffi, E.B. Martin and A.J. Morris, Chemom. Intell. Lab. Syst., 52 (2000)
5-22.
[229]
T. Naes, T. Issaksson and B.R. Kowalski, Anal. Chem., 62 (1990) 664-673.
[231]
V. Centner, O.E. de Noord and D.L. Massart, Anal. Chim. Acta, 376 (1998)
153-168.
[232]
J.N. Miller and J.C. Miller, Statistics and Chemometrics in Analytical
Chemistry, 4th edn., Pearson Education Limited, Edinburgh Gate,
2000.
[233]
F.S. Swed and C. Eisehart, Ann. Math. Statist., 14 (1943) 66.
[234]
S. Gourvénec, D.L. Massart and D.N. Rutledge, Chemom. Intell. Lab. Syst., 61
(2002) 51-61.
[235]
S-Plus 6 for Windows, Guide to Statistics, Vol. 1, Insightful Corporation, Seattle,
2001.
[236]
N.R. Drapper and H. Smith, Applied Regression Analysis, 2nd edn.,
Wiley, New York, 1981.
[237]
A. Berglund and S. Wold, J. Chemometrics, 11 (1997) 141-156.
[238]
A. Berglund and S. Wold, J. Chemmetrics, 13 (1999) 461-471.
[239]
B.G.M. Vandeginiste, D.L. Massart, L.M.C. Buydens, S. De Jong, P.J. Lewi and
J. Smeyers-Verbeke, Handbook of Chemometrics and Qualimetrics: Part B,
Elsevier, Amsterdam, 1998.
[240]
S. Wold, N. Kettaneh-Wold and B. Skagerberg, Chemom. Intell. Lab. Syst., 7 (1989) 53-65.
[241]
K. Hasegawa, T. Kimura and K. Funatsu, Quant. Struct. Act. Relat., 16 (1997)
219-223.
[242]
T. Li, H. Mei and P. Cong, Chemom. Intell. Lab.
Syst., 45 (1999) 177-184.
[243]
H. Yoshida and K. Funatsu, J. Chem. Inf. Comput. Sci., 37 (1997) 1115-1121.
[244] T.
Kimura, Y. Miyashita, K. Funatsu and S. Sasaki, J. Chem. Inf. Comput. Sci., 36
(1996) 185-189.
[254] M.J.
Arcos, M.C. Ortiz, B. Villahoz and L. A. Sarabia, Anal. Chim. Acta, 339 (1997)
63-77.
[255]
D. Jouan-Rimbaud, D.L. Massart and O.E. de Noord, Chemom. Intell. Lab. Syst., 35 (1996) 213-220.
[256]
R. Leardi, J. Chemom., 8 (1994) 65-79.
[257]
J.R.M. Smits, W.J. Melssen, L.M.C. Buydens and G. Kateman, Chemom. Intell.
Lab. Syst., 22 (1992), 165-189.
[258]
D. Svozil, V. Kvasnicka and J. Pospìchal, Chemom. Intell. Lab. Syst., 39 (1997) 43-62.
[259]
K. Hornik, M. Stinchcombe and H. White, Neural Networks, 4 (1989) 359-366.
[260]
K. Hehl, Untersuchung dünner polymerer Filme und deren Wechselwirkung
mit Analyten mit spektraler Ellipsometrie, Ph.D. Thesis, University of Tübingen,
1998.
[261]
D. Reichl, Aufbau, Charakterisierung und Optimierung eines optischen Sensorsystems
zur reflektometrischen Interferenzspektroskopie mit mehrfarbigen Leuchtdioden,
Ph. D. thesis, University of Tübingen, 2000.
[262]
A.H.C. van Kampen and L.M.C. Buydens, Computers Chem., 21 (1997) 153-160.
[263]
W.H. Kruskal and W.A. Wallis, J. Am. Stat. Assoc., 47 (1952) 583-621.
[264]
A. Herrero and M.C. Ortiz, Anal. Chim. Acta, 378 (1999) 245-259.
[265]
M. Hollander and D.A. Wolfe, Nonparametric Statistical Methods, Wiley, Chichester,
1973.
[266] L.
Norgaard, A. Saudland, J. Wagner, J.P. Nielsen, L. Munck and S.B. Engelsen,
Appl. Spectrosc., 54 (2000) 413-419.
[267]
F. Dieterle, S. Busche and G. Gauglitz, Anal. Chim. Acta, in press.
[268]
F. Dieterle, S. Müller-Hagedorn, H.M. Liebich and G. Gauglitz, in preparation.
[269]
R. Buchhold, Bimorphe Gassensoren, Dresden University Press, Dresden,
1999.
[270]
J. Piehler, Thermodynamische und kinetische Charakterisierung biomolekularer
Erkennung mit direkten optischen Transducern, Ph. D. Thesis, University
of Tübingen, 1997.
[271]
S. Reder, F. Dieterle, H. Jansen, S. Alcock and G. Gauglitz, Multi-analyte
assay for triazines using cross-reactive antibodies and neural networks,
Biosens. Bioelectron., submitted.
[272]
C.-N. Ho, G.D. Christian and E.R. Davidson, Anal. Chem., 50 (1978)
1108-1113.
[273]
E. Sánchesz and B.R. Kowalski, Anal. Chem., 58 (1986) 496-499.
[274]
K. Kato, Y. Kato, K. Takamatsu, T. Udaka, T. Nakahara, Y. Matsuura and K.
Yoshikawa, Sens. Actuators B, 71 (2000) 192-196.
[275]
P. Mielle and F. Marquis, Sens. Actuators B,
76 (2001) 470-476.